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Abstract. We revised a description of low-energy neutron cross section data for even-even spherical nuclei
in terms of the coupled channel optical model (CCOM). It is shown that two-phonon version of this model
allows to obtain a unified description of these data assuming slight changes of nuclear diffuseness parameter
for magic and near-magic nuclei. Neutron strength functions and scattering lengths for even-even spherical
nuclei are also calculated using the same model. Results of these calculations are in a good agreement with
experimental data. NpNn-systematics of inelastic neutron scattering on even-even nuclei is proposed. This
systematics combined with CCOM calculations of neutron cross sections presents an additional method
for finding nuclei with semimagic numbers of nucleons.

PACS. 24.10.Eq Coupled-channel and distorted wave models – 25.40.Fq Inelastic neutron scattering –
28.20.Cz Neutron scattering

1 Introduction

It is well-known that the low-energy neutron data for even-
even nuclei are reasonably described in terms of the cou-
pled channel optical model – CCOM (see e.g. [1]). How-
ever, an optimum description of neutron cross sections
for isotopic chains (such as of Ge, Se, Cd, Sn, Te) [2–5]
required individual values of the optical potential param-
eters for different isotopes, even in spite of taking into
account the isospin dependence of the potential. Such dif-
ferences can be rather significant, e.g. for 76Se and 82Se
[2] the real potential depth values differ by ≈ 7 MeV. It
should be noted that to obtain a satisfactory description
of neutron data for the energies up to 3 MeV it is not suf-
ficiant to use the simplest (one-phonon) version of CCOM
as it was done in [1]. It is shown [4,6] that the two-phonon
(five channel) version of CCOM is minimally necessary
for such a description since it is more realistic than one-
phonon (two-channel) approximation. But while the two-
phonon version gives a description of the neutron data
for Cd and Te isotope chains using practically the same
CCOM parameter values [3,4] in the energy region under
consideration, this version fails to give such a description
of analogous data for the isotope chains of Ge, Se and Sn.
There is no doubt that such a failure is connected with
the fact that any optical model is unable to take into ac-
count effects of the nuclear shell structure which can lead
to some “unregularities” in the A-dependence of the neu-
tron cross sections. In other words, a unified description of
low-energy neutron data for even-even nuclei seems to be

imposible without taking into account shell effects. Em-
phasize that speaking about unified description of neutron
data in the framework of CCOM we mean a description
using the same set of the optical potetial parameter values
for all the energy range and all the nuclei under consider-
ation.

In Sect. 2 of this paper it is shown that a unified de-
scription of the neutron cross sections at energies up to
3 MeV for spherical even-even nuclei with 56 ≤ A ≤ 206
may be obtained by use of slightly reduced values of the
nuclear diffuseness parameter for magic and near-magic
nuclei. Such a reduction effectively takes into account the
influence of the nuclear shell structure on CCOM calcu-
lations. Note that the nuclear diffuseness reduction for
magic and near-magic nuclei was proved theoretically and
observed experimentally (see e.g. [7–9]).

Section 3 is devoted to calculations of the neutron
strength functions and potential scattering lengths. Re-
sults of these calculations are compared with relevant ex-
perimental data.

In Sect. 4 we demonstrate that the inelastic neutron
cross sections corresponding to the excitation of 2+

1 lev-
els show a smooth dependence on the product NpNn
of the valence proton and neutron numbers (so-called
NpNn-systematics). This systematics together with sim-
ilar NpNn-dependences of some spectroscopic data (see
e.g. [10]) can help in finding “non-traditional” magic or
semimagic numbers of protons and neutrons.

Section 5 presents the conclusion of the paper.
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Fig. 1. Neutron total cross sections for 76,78Se,
110,116Cd, 116,122Sn, and 124,130Te. Experimen-
tal points are taken from [2,4,35]. Solid curves
present CCOM calculation results of this pa-
per

2 Description of neutron cross sections

To obtain an optimum description of neutron cross sec-
tions we reconsidered the experimental data on total, in-
elastic and differential elastic and inelastic cross sections
for 0.07 MeV ≤ En ≤ 3.00 MeV for even-even spherical
nuclei with 56 ≤ A ≤ 206 in terms of the two-phonon ver-
sion of CCOM. For our analysis we used experimental data
obtained at the Institute for Nuclear Research of Russiam
Academy of Sciences (see refs. cited above) together with
results of other laboratories (e.g. [11,12]). To describe A-
and E-dependences of the average neutron cross sections
we used the formalism propose by Hofmann, Rihert, Te-
pel and Weidenmüller [13]. The method of calculation is
described in details in [14].

For our calculation we used nonspherical optical po-
tential with the real part of Woods-Saxon’s form. The
real part included the spin-orbital term and the symmetry
potential. Radial dependence of the imaginary part was
taken as the derivative of the real part. Geometrical pa-
rameters of the potential were the same for real and imag-
inary parts: the potential radius was fixed as R = r0A

1/3

with r0 = 1.22 fm; the nuclear diffuseness parameter a
was initially taken to be equal to 0.65 fm, but as it was
pointed out in the Introduction it was slightly changed
for some nuclei in order to obtain better description. The

spin-orbit interaction parameter Vso was equal to 8 MeV.
The depth of the real potential together with the isospin-
dependent term was chosen as V = V0−V1(N−Z)/A with
V1 = 22 MeV. The depths of real and imaginary parts V0

and W were two free parameters to fit. As to the diffuse-
ness a it was a kind of a “half-free” parameter since it was
slightly changed (starting from the initial value of 0.65 fm)
only for several nuclei. The values of the quadrupole de-
formation parameter β2, which define matrix elements of
channel coupling, were taken from [15], though generally
speaking, the deformation parameters could be regarded
as phenomenological ones.

The model parameters were determined for each nu-
cleus proceeding from the requirement of an optimum de-
scription of the energy dependences for the total and in-
elastic cross sections, differential cross sections of elastic
and inelastic scattering for the energy range under con-
sideration. As a criterion of an optimum description the
value of χ2 was taken.

Figures 1–4 demonstrate typical examples of our de-
scription of the experimental data. One can see a good
agreement between the calculated curves and experimen-
tal points. Note that almost in all the cases of the energy
and angular dependences we obtained χ2 ≤ 1.0. Only for
a few nuclei having considerable fluctuations in the energy
dependences of cross sections the description of those de-
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Fig. 2. Neutron inelastic cross sections for 64Zn, 86Sr, 118Sn,
148Sm, and 202Hg. Experimental points are taken from [1].
Solid curves – CCOM calculation of this paper

pendences was somewhat worse, but anyway the χ2 value
never exceeded 2.0.

Table 1 presents the model parameter values obtained
in our analysis for each nucleus. The Table also contains
experimental values of the inelastic cross sections with ex-
citation of the 2+

1 levels taken at the energy 300 keV above
threshold and averaged over 100 keV, calculated values of
these cross sections, χ2 values characterizing quality of the
inelastic cross section description, and the valence nucleon
product values (NpNn). We need all that for considering
the NpNn systematics of neutron inelastic scattering (see
below).

As it was noted above, in some cases we altered the
diffuseness parameter values (as compared to initial a =
0.65 fm) to obtain better description (χ2 ≤ 1). Such alter-
ation was done for magic and near-magic nuclei since there

are experimental and theoretical indications [7–9] about
some reduction of the surface layer (i.e. diffuseness) for
nuclei with closed shells. An example of such a reduction
gives the chain of Sn isotopes (Z = 50): a good description
of the total cross sections for 112−124Sn was achieved at
a = 0.60 fm (V0 = 53.5±1.0 MeV and W = 2.5±0.5 MeV)
except for 114Sn (see below). This reduction of a allowed
to improve quality of the cross section description con-
siderably: at a = 0.60 fm we obtained χ2 ≤ 1 instead of
χ2 = 2− 6 for different isotopes at a = 0.65 fm. As a rule
the a value for magic (and sometimes for near-magic) nu-
clei was equal to 0.60 fm; the minimal a value was equal to
0.57 fm for 140Ce (N = 82). Note that for 206Pb (Z = 82)
the a value obtained in our analysis was also reduced, but
the analysis was made difficult for this isotope because of
considerable fluctuations in the inelastic cross section.

Emphasize that using reduced a values for magic and
near-magic nuclei alowed not only to improve descrip-
tion of neutron data for these nuclei, but also to describe
low-energy neutron data for a large number of even-even
spherical nuclei in terms of the two-phonon version of
CCOM, using practically the same values of model pa-
rameters V0 and W , namely V0 = 52.5 ± 1.5 MeV and
W = 2.5± 0.5 MeV.

The unified description seems to be broken only
for nuclei which can be considered as having so-called
“semimagic” numbers [10] of nucleons: neutron cross sec-
tions for such nuclei, as a rule, differ significantly from
coresponding cross sections for neighbouring even-even
nuclei. The most clear examples of such a behaviour
present even-even isotopes of Ge and Se, neutron cross
sections of which having strong dependence on the num-
ber of neutrons. For instance, experimental values of the
inelastic scattering cross section with 2+

1 level excitation
for neighbouring isotopes 70Ge and 72Ge differ by factor
≈ 1.7 (see Table 1). Such a difference may be explained
by appearance (and disappearance) of a new energy gap
when neutron subshell f5/2 is closed. If it is so the neutron
number N = 38 can be regarded as a semimagic number
(less steady than the traditional magic numbers of nucle-
ons).

The problem of the semimagic number existence is of-
ten correlated with the question on the nuclear diffuseness
value in CCOM. This correlation can be demonstrated in
the case of Ge and Se isotopes for which the surface layer
thickness (diffuseness) is known from the analysis of the
elastic electron scattering data at 225 MeV [9]. In the chain
of Ge isotopes the diffuseness is minimal for 70Ge, for 72Ge
it increases, becomes maximal for 74Ge and starts decreas-
ing for 76Ge. Note that to obtain a better description of
neutron data for Ge and Se isotopes we had to use the pa-
rameter a values which were bigger than the initial 0.65 fm
(see Table 1), namely the values given by experiments
[9].

Another example of the correlation between diffuseness
and semimagic numbers presents 114Sn. This nucleus may
be considered as twice magic [6] because its neutrons (N =
64) seem to form the closed shell (1g7/2 and 2d5/2). As a
consequence, the parameter a value taken for the optimum
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Fig. 3. Differential cross sections of low-
energy neutron elastic scattering on 76−82Se,
110Cd, 120Sn, and 126Te. Experimental points
are taken from [2,4,35]. Solid curves – CCOM
calculation results of this paper. The curves
of each plot are shifted up (together with cor-
responding experimental points) by 0.5 b one
from the other

Fig. 4. Differential cross sections of low-energy neutron inelas-
tic scattering on 78Se, 110Cd, and 126Te. Experimental points
are taken from [2,4,35]. Solid curves – CCOM calculation re-
sults of this paper

description of total cross sections (the only neutron data
available for this nucleus) was equal to 0.5 fm.

Thus, the results reported above show a possibility
to describe the totality of existing data on low-energy
neutron cross sections for even-even spherical nuclei in
terms of the two-phonon version of CCOM using one set
of the model parameters. And that stimulated us to con-
sider neutron strength functions and potential scattering
lengths for such nuclei in the same model approach.

3 Neutron strength functions and potential
scattering lengths

Neutron strength functions Sl (l = 0, 1, 2) are defined from
the experimental data as Sl = 〈Γ (l)

n 〉/〈D(l)〉, where 〈Γ (l)
n 〉

is the average reduced width of a compound nucleus for
neutron angular momentum l, 〈D(l)〉 is the average dis-
tance between corresponding energy levels.

At present the S0 values are known for the majority
of stable nuclei [16–18], and a considerable part of this
information is obtained from the analysis of isolated res-
onances. Experimental data on S1 are not so numerous,
they are obtained mainly for nuclei with A ' 100 and for
some of the rare earth nuclei. Note that in many cases
the S1 values obtained by different methods differ signifi-
cantly. In this connection we mention a method proposed
by G.S. Samosvat [19,20] and based on a spectroscopic
analysis of the differential cross sections of low-energy neu-
tron elastic scattering. This method seems to be more re-
liable in obtaining the S1 values together with potential
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Table 1. Parameters of even-even spherical nuclei. The NpNn values marked by ∗ are obtained assuming the existence of
semimagic numbers Z = N = 40 (76Se, 98,100Mo), Z = 56 (142Ce), N = 64 (108−116Cd)

Nucleus Z N NpNn σexpinel, b σtheorinel , b χ2 V0, MeV W , MeV a, fm

60Ni 28 32 0 0.60(9) 0.52 1.29 51.0 3.0 0.65
64Zn 30 34 8 0.63(5) 0.61 1.02 53.5 2.5 0.65
66Zn 30 36 4 0.59(6) 0.55 1.42 53.0 3.0 0.65
68Zn 30 38 0 0.50(5) 0.49 1.06 52.0 2.0 0.65
70Ge 32 38 0 0.65(7) 0.68 0.98 53.0 3.0 0.65
72Ge 32 40 40 1.12(12) 1.07 0.33 53.0 2.0 0.75
74Ge 32 42 32 1.28(16) 1.26 0.91 52.0 2.0 0.80
76Ge 32 44 24 1.15(14) 1.23 1.10 52.0 2.0 0.75
76Se 34 42 12∗ 0.94(13) 0.96 0.62 52.0 2.0 0.70
78Se 34 44 36 1.23(15) 1.13 0.63 52.0 2.0 0.75
80Se 34 46 24 0.95(12) 0.95 0.23 53.0 2.0 0.65
86Sr 38 48 20 0.95(10) 0.90 0.98 53.5 2.0 0.65
92Zr 40 52 20 1.06(12) 0.95 1.12 53.0 2.0 0.65
94Zr 40 54 40 1.12(13) 1.00 0.97 52.5 2.0 0.65
94Mo 42 52 16 1.08(12) 1.00 0.70 51.5 2.0 0.65
96Mo 42 54 32 1.05(10) 1.02 0.82 51.0 2.0 0.65
98Mo 42 56 12∗ 0.82(8) 0.87 0.94 51.5 2.0 0.65
100Mo 42 58 16∗ 1.00(15) 0.93 0.70 50.5 2.0 0.65
108Cd 48 60 8∗ 0.81(17) 0.67 0.95 52.0 3.0 0.60
110Cd 48 62 4∗ 0.75(10) 0.66 0.99 52.5 3.0 0.60
112Cd 48 64 0∗ 0.80(12) 0.70 0.87 54.0 3.0 0.60
114Cd 48 66 4∗ 0.74(11) 0.67 0.60 52.5 3.0 0.60
116Cd 48 68 8∗ 0.69(13) 0.69 1.16 52.5 2.5 0.60
116Sn 50 66 0 0.65(13) 0.62 0.92 52.5 2.5 0.60
118Sn 50 68 0 0.63(6) 0.63 0.38 52.5 2.5 0.60
120Sn 50 70 0 0.55(5) 0.59 0.65 52.0 2.0 0.60
122Sn 50 72 0 0.53(6) 0.54 0.52 52.0 2.0 0.60
124Sn 50 74 0 0.49(6) 0.50 0.41 53.0 2.0 0.60
122Te 52 70 24 0.87(9) 0.86 1.14 52.0 3.0 0.65
124Te 52 72 20 0.90(9) 0.91 1.22 53.0 3.0 0.65
126Te 52 74 16 0.80(8) 0.84 0.65 52.0 3.0 0.65
128Te 52 76 12 0.69(7) 0.73 0.35 52.0 2.0 0.65
136Ba 56 80 12 0.66(10) 0.57 0.88 52.0 2.0 0.60
138Ba 56 82 0 0.48(6) 0.44 1.11 53.0 2.0 0.60
140Ce 58 82 0 0.62(6) 0.67 0.55 52.0 2.0 0.57
142Ce 58 84 4∗ 0.60(8) 0.63 0.74 51.0 2.0 0.60
148Sm 62 86 48 1.03(13) 1.07 0.90 53.0 2.5 0.65
192Os 76 116 60 1.38(16) 1.35 0.23 53.0 2.0 0.65
198Pt 78 120 24 1.29(20) 1.13 0.90 51.0 2.5 0.65
198Hg 80 118 16 0.93(12) 0.94 0.33 53.5 3.0 0.60
200Hg 80 120 12 0.88(9) 0.80 1.20 53.0 3.0 0.60
202Hg 80 122 8 0.78(8) 0.72 0.80 53.5 2.0 0.60
204Hg 80 124 4 0.75(13) 0.73 0.60 52.5 2.5 0.60
206Pb 82 124 0 0.48(5) 0.44 2.09 53.0 2.0 0.60

scattering lengths R′0 and R′1 for even-even nuclei. As to
the data on S2 they are rather scarce now since the d-
neutrons resonances are not studied sufficiently well.

In spite of existing many phenomenological and micro-
scopic approaches to the theoretical description of neutron
strength functions and potential scattering lengths there
is no approach which would give a satisfactory description
of them together with other low-energy neutron data. The
main trouble is a poor description of the positions and the

magnitudes of deep minima observed for S0 (at A ' 120)
and for S1 (at A ' 54) as it was pointed out earlier [16].

We have calculated S0, S1, S2, R′0 and R′1 for 56 even-
even spherical nuclei with 58 ≤ A ≤ 206 using two-phonon
version of CCOM with the model parameter values defined
for the optimum description of low-energy neutron cross
sections (see previous section). Our results are presented
in Tables 2 and 3 together with the experimental values
of S0, S1, S2, R′0 and R′1 taken from the compilations
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Table 2. Strength functions and potential scattering lengths for s- and p-wave neutrons

S0 × 104 S1 × 104 R′0, fm R′1, fm

Nucleus exp. theor. exp. theor. exp. theor. exp. theor.

58Ni 2.8± 0.6[16] 3.1 0.5± 0.1[16] 0.33 8.0± 0.5[16] 7.0 3.0
3.26± 0.59[18]

60Ni 2.7± 0.6[16] 3.2 0.3± 0.1[16] 0.35 6.7± 0.3[16] 6.6 2.8
3.05± 0.57[18]

62Ni 2.8± 0.7[16] 3.5 0.3± 0.1[16] 0.36 6.2± 0.3[16] 6.3 2.5
2.70± 0.60[18]

64Ni 2.9± 0.8[16] 3.2 0.6± 0.2[16] 0.50 7.6± 0.3[16] 6.9 3.0
2.10± 0.40[18]

64Zn 1.70± 0.16[16] 2.4 0.60± 0.04[16] 0.70 7.3 0.93
1.89± 0.26[18]

66Zn 1.9± 0.2[16] 2.5 0.70± 0.07[16] 0.70 7.3 0.52
2.06± 0.36[18]

68Zn 2.2± 0.3[16] 2.5 0.39± 0.03[16] 0.51 7.3 0.80
2.01± 0.34[18]

70Zn 1.8± 0.3[16] 2.2 1.45± 0.40[16] 0.90 7.1 11.6
2.05± 0.35[18]

70Ge 2.1± 0.9[16] 2.1 1.0 6.9± 0.1[16] 6.9 1.5
1.90± 0.30[18]

72Ge 1.66± 0.50[16] 1.5 2.0 6.9± 0.1 7.0 1.9
1.50± 0.40[18]

74Ge 1.5± 0.7[16] 1.8 2.0 6.9± 0.1[16] 6.9 0.64
2.3± 0.8[18]

76Ge 1.78± 0.02[16] 1.7 3.2 7.0 3.1
1.60± 0.50[18]

74Se 1.29± 0.80[16] 1.3 3.4 7.5± 0.7[16] 6.9 3.0
3.10± 0.70[18]

76Se 1.64± 0.60[16] 1.6 0.94± 0.60[16] 0.93 7.5± 0.7[16] 7.4 1.3
2.40± 0.50[18]

78Se 1.23± 0.60[16] 1.5 1.7± 1.0[16] 3.6 8.3± 0.8[16] 6.7 2.0
1.50± 0.60[18]

80Se 1.6± 1.0[16] 1.6 0.5± 0.5[16] 0.97 8.7± 0.8[16] 7.1 1.2
2.7± 1.2[18]

82Se 1.2± 1.0[16] 1.4 1.9 7.5[16] 7.1 1.6
3.10± 0.70[18]

84Sr 0.87± 0.39[16] 0.76 1.6 6.9 4.3
0.80± 0.30[18]

86Sr 0.62± 0.10[16] 0.64 1.6 6.9 4.2
0.70± 0.20[18]

88Sr 0.45± 0.10[16] 0.65 4.98± 0.74[16] 4.2 7.1± 0.1[16] 6.6 4.1
0.41± 0.12[18]

90Zr 0.7± 0.2[16] 0.53 4.0± 0.6[16] 4.0 7.2± 0.2[16] 6.7 4.6
0.54± 0.10[18]

92Zr 0.50± 0.10[16] 0.61 7.0± 1.3[16] 6.0 7.2± 0.2[16] 6.7 7.0
0.70± 0.15[18]

94Zr 0.50± 0.15[16] 0.40 9.8± 2.0[16] 6.0 7.2± 0.2[16] 6.6 7.5
0.72± 0.16[18]

96Zr 0.34± 0.14[16] 0.39 6.0± 1.8[16] 5.5 7.2± 0.2[16] 6.7 7.8
0.30± 0.15[18]

92Mo 0.50± 0.20[16] 0.65 4.7± 1.5[16] 4.2 7.0± 0.2[16] 6.5 2.25± 0.91[21] 2.8
0.56± 0.07[18] 3.39± 0.87[21]

2.4± 0.9[22]
94Mo 0.53± 0.20[16] 0.58 4.6± 2.0[16] 5.9 7.2± 0.2[16] 6.6 3.18± 0.60[21] 2.9

0.44± 0.08[18] 4.25± 0.66[21]
4.2± 1.0[22]

96Mo 0.43± 0.14[16] 0.61 8.7± 2.8[16] 5.0 7.0± 0.2[16] 6.5 3.1
0.62± 0.12[18] 4.5± 1.0[22]
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Table 2. Continued.

S0 × 104 S1 × 104 R′0, fm R′1, fm

Nucleus exp. theor. exp. theor. exp. theor. exp. theor.

98Mo 0.54± 0.12[16] 0.57 3.6± 0.6[16] 5.0 6.9± 0.2[16] 6.5 3.3
0.48± 0.09[18] 8.0± 1.5[22]

100Mo 0.73± 0.17[16] 1.0 4.4± 0.9[16] 4.0 6.9± 0.2[16] 6.2 0.64
0.65± 0.10[18] 5.5± 0.7[22]
0.51± 0.18[22]

106Cd 1.00± 0.35[16] 0.71 5.0± 1.5[16] 5.0 5.8 8.7± 0.6[21] 8.1
1.00± 0.35[18] 4.11± 0.64[21]

108Cd 1.2± 0.4[16] 0.6 4.8± 1.3[16] 5.2 5.8 9.9± 0.8[21] 8.9
1.16± 0.46[18] 4.40± 0.54[21]

110Cd 0.44± 0.11[16] 0.5 3.0± 1.0[16] 5.3 6.6± 0.1[22] 5.8 10.7± 0.8[21] 9.9
0.28± 0.07[18] 5.40± 0.43[21]

2.6± 0.5[22]
112Cd 0.5± 0.1[16] 0.5 4.4± 1.0[16] 5.0 6.5± 0.1[22] 5.8 10.4± 0.6[21] 10.1

0.5± 0.1[18] 4.39± 0.36[21]
3.5± 0.7[22]

114Cd 0.64± 0.16[16] 0.6 3.5± 1.0[16] 4.9 6.5± 0.1[22] 5.8 10.1
0.64± 0.16[18] 4.2± 0.3[21]

5.6± 0.6[22]
116Cd 0.16± 0.05[16] 0.6 2.8± 0.8[16] 4.9 5.7 10.5± 0.6[21] 10.0

0.16± 0.05[18] 3.99± 0.50[21]
112Sn 0.3± 0.1[16] 0.34 3.5± 0.4[23] 5.7 5.8± 0.2[23] 6.0 8.2± 0.3[23] 9.9

0.3± 0.1[18] 2.9
114Sn 0.2± 0.1[16] 0.25 2.8± 0.3[23] 4.7 6.3± 0.3[16] 5.9 7.8± 0.3[23] 8.6

0.2± 0.1[18] 2.4 5.9± 0.2[23]
116Sn 0.40± 0.25[18] 0.27 3.81± 0.35[21] 4.2 6.2± 0.1[16] 5.9 11.3± 0.4[21] 11.2

0.18± 0.04[22] 2.7± 0.7[22] 2.3 5.8± 0.2[23] 8.2± 0.3[23]
0.26± 0.05[30] 2.3± 0.2[23]

118Sn 0.46± 0.21[18] 0.27 2.91± 0.42[21] 4.2 6.0± 0.2[16] 5.9 11.8± 0.6[21] 11.1
0.09± 0.02[22] 2.7± 0.7[22] 2.0 6.1± 0.2[22] 8.5± 0.3[23]

0.16[23] 2.1± 0.2[23] 5.6± 0.2[23]
120Sn 0.14± 0.02[16] 0.28 2.1± 0.2[16] 4.0 6.1± 0.1[22] 5.8 11.1± 0.3[21] 10.9

0.14± 0.03[18] 2.15± 0.23[21] 2.0 6.1± 0.2[23] 8.7± 0.3[23]
0.06± 0.04[22] 2.0± 0.6[22]

1.6± 0.2[23]
122Sn 0.17± 0.05[16] 0.29 3.08± 0.42[21] 3.7 5.7± 0.3[16] 5.7 12.5± 0.6[21] 12.4

0.123± 0.023[24] 2.7± 0.7[22] 1.8 6.1± 0.1[22] 8.6± 0.3[23]
1.4± 0.2[23] 6.1± 0.2[23]
2.0± 0.2[24] 6.3± 0.1[24]

124Sn 0.15± 0.08[16] 0.24 3.53± 0.35[21] 3.5 5.9± 0.2[16] 5.8 12.2± 0.6[21] 11.5
0.12± 0.03[18] 3.0± 0.8[22] 1.7 6.0± 0.1[22] 8.7± 0.3[23]
0.19± 0.03[22] 1.4± 0.2[23] 6.1± 0.2[23] 10.5± 0.3[24]
0.12± 0.03[24] 1.8± 0.2[24] 6.4± 0.2[24]

122Te 0.83± 0.20[16] 0.73 4.0 5.9± 0.2[16] 5.7 9.4
0.83± 0.12[18]

124Te 0.60± 0.12[16] 0.73 4.0 5.9± 0.2[16] 5.7 9.4
0.83± 0.12[18]

126Te 0.28± 0.10[16] 0.37 4.1 5.6± 0.2[16] 5.6 11.9
128Te 0.25± 0.10[16] 0.35 4.4 5.5± 0.3[16] 5.6 12.4
130Te 0.16± 0.05[16] 0.25 3.7 5.4± 0.3[16] 5.8 10.5
134Ba 0.53± 0.14[16] 1.05 0.8± 0.3[16] 1.9 4.7 11.4

1.40± 0.40[18] 3.2± 0.6[31]
136Ba 0.8± 0.3[16] 0.69 1.8± 0.3[31] 2.0 5.45[22] 5.1 10.5

0.86± 0.23[18] 1.15± 0.28[32]
0.9± 0.3[22]

138Ba 1.6± 0.4[16] 0.64 0.98± 0.28[32] 1.5 5.45[22] 5.1 11.0
0.66± 0.28[18]
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Table 2. Continued.

S0 × 104 S1 × 104 R′0, fm R′1, fm

Nucleus exp. theor. exp. theor. exp. theor. exp. theor.

140Ce 1.1± 0.3[16] 0.83 0.34± 0.05[27] 0.90 5.7± 0.5[16] 5.2 9.7
1.20± 0.30[18] 5.1± 0.3[27]

142Ce 1.2± 0.5[16] 0.73 1.7 5.9± 0.7[16] 5.1 11.2
144Nd 4.0± 1.0[16] 4.4 0.5± 0.2[16] 1.0 6.0± 0.5[16] 3.7 8.4

5.1± 0.9[18]
144Sm 3.2± 1.4[17] 4.0 0.80 3.0 8.5

3.6± 0.8[18]
148Sm 3.80± 0.80[18] 3.8 1.91± 0.46[29] 1.3 5.1± 0.3[27] 5.0 9.0
192Os 2.4± 0.5[28] 3.0 0.73+0.51

−0.39[26] 0.50 8.0 4.0
198Pt 1.4± 0.6[18] 2.0 0.58 9.4± 0.2[17] 9.3 5.0

1.3± 0.5[26]
202Hg 1.4± 0.5[28] 2.0 0.06+0.04

−0.03[28] 0.4 9.5 4.0
0.25[28]

204Pb 0.65± 0.12[17] 1.3 0.23± 0.04[17] 0.26 9.7 3.9
1.10± 0.20[18]

206Pb 1.20± 0.20[18] 1.2 0.32± 0.04[29] 0.37 9.46± 0.15[29] 7.2 5.0
1.06± 0.26[29] 0.13[25]

[16–18] and original papers [21–32]. Tables 2 and 3 show
that our approach allows to describe those values suffi-
ciently well. For example, while the isotopic dependence
of S0 for the Te isotopes was not described before, our ap-
proach allowed to describe it. Another interesting example
present isotopes 112−124Sn which are located around the
maximum of the p-wave and the minimum of s- and d-wave
neutron strength functions. Therefore the p-wave contri-
butions to neutron cross sections are dominant here, and
that favours experimental determination of S1 [23]. At the
same time the experimental values of S0 for the isotopes
of Sn are very small [24], and this fact leads to serious
difficulties in the description of S0 for these isotopes (see
e.g. [16]), but in our approach such a description seems to
be quite satisfactory (see Table 2).

Note that one of the difficulties in a model description
of the neutron strength functions for some nuclei is con-
nected with rather big dispersion of their values extracted
from experimental data at different energies. Taking this
fact into account allows to remove (or at least to reduce)
some discrepancies between calculated and experimental
values of the strength functions under consideration. For
example, while all the theoretical values of Sl presented in
Tables 2 and 3 are calculated at En = 40 keV, for several
nuclei we give two S1 values calculated at 40 and 700 keV,
and the latters agree with the data of [23].

Table 3 also demonstrates a satisfactory agreement be-
tween calculated and experimental values of d-wave neu-
tron strength functions for 112−124Sn [23], 144,148Sm [29],
and 206Pb [25], i.e. for the nuclei which we can con-
sider in our approach (most of the available data on d-
wave strength functions concern the deformed nuclei). Re-
sults of our calculation confirm the well-known assumption
that d-wave neutron strength functions are approximately
equal to the s-wave ones.

Table 3. d-wave neutron strength functions

Nucleus S2 × 104

exp. theor.

112Sn 0.3± 0.1[23] 0.25
114Sn 0.2± 0.1[23] 0.17
116Sn 0.20± 0.04[23] 0.25
118Sn 0.16± 0.05[23] 0.20
120Sn 0.14± 0.02[23] 0.19
122Sn 0.17± 0.05[23] 0.22
124Sn 0.15± 0.08[23] 0.21
144Sm 2.33± 0.44[29] 2.01
148Sm 3.50± 0.46[29] 3.10
206Pb 1.5[25] 1.64

Thus, the model used here allows to describe neu-
tron strength functions and potential lengths for even-even
spherical nuclei reasonably well.

4 NpNn systematics of the neutron inelastic
cross sections

In [5] an attempt was made to systematize experimental
cross sections of inelastic neutron scattering with the 2+

1
level exitation for even-even nuclei. The inelastic neutron
cross section values were considered as a function of va-
lence nucleon numbers. It was shown by Casten [10] that
different quantities characterizing the collective nuclear
properties can be presented as smooth functions of the
product NpNn (Np and Nn are numbers of valence protons
and neutrons or their hole states). The values of NpNn for
many even-even spherical nuclei with 60 ≤ A ≤ 206 are
given in Table 1 taking into account the existence of non-
traditional magic (or semimagic) numbers of nucleons.
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Fig. 5. Inelastic neutron cross sections with 2+
1 level excitation

at the energy of 300 MeV over threshold vs. the NpNn product.
The solid line is drawn using the least square method

Experimental cross section values of neutron inelastic
scattering with 2+

1 level exitation for the energy equal to
300 keV over the threshold are plotted on Fig. 5 vs. NpNn
(we used here cross section values averaged over the energy
range of 100 keV). Note that for the NpNn systematics
of neutron inelastic scattering we consider relevant cross
section values for deformed nuclei as well as for spherical
ones. Within the experimental errors all these cross sec-
tions show more or less smooth dependence on the prod-
uct NpNn. On the average, this dependence is described
by the solid curve of Fig. 5 which is drawn using the least
square method (with χ2 . 1 per one point).

The smoothness of this dependence to a great extent
is due to taking into account the effect of appearance (and
disappearance) of semimagic numbers of nucleons. For in-
stance, the NpNn values for neighbouring isotopes 70Ge
and 72Ge are equal to 0 and 40 respectively, the corre-
sponding points on the plot of Fig. 5 are located rather far
one from the other, and as a result they do not break the
smoothness of the curve under consideration (in spite of
the fact that the relevant cross sections differ one from the
other by factor of 1.7). It is known that semimagic num-
bers are less stable than the traditional magic ones; two
isotopes of Ge illustrate this property for the semimagic
number N = 38.

The existence of the semimagic number Z = 38 (or
40) [33] and its disappearence due to the monopole inter-
action of valence proton and neutron (filling g9/2 and g7/2

states) should be taken into account while analysing prop-

erties of the Mo isotopes [5]. Similar conclusions can be
made concerning to semimagic Z = 64 and N = 64 [10]:
their existence (and disappearence) is also confirmed by
the analysis of neutron inelastic scattering on the isotopes
of Sm and Cd in the framework of the NpNn systematics
[5,6].

It is seen from Fig. 5 that the smooth increase of the
inelastic cross sections practically stops for NpNn & 60,
which corresponds to considerable deformations. For ex-
ample, the relevant cross section for 238U (NpNn = 200)
[34] coincides with the cross sections for the W isotopes
shown on Fig. 5. Such a behaviour seems to be quite nat-
ural since this product can be regarded as a quantity con-
nected with the collectivity degree of low-lying nuclear
states.

5 Conclusion

Thus, our calculations of neutron cross sections for even-
even spherical nuclei in the framework of CCOM show
that the two-phonon version of this model allows to ob-
tain a unified description of neutron data for these nuclei
at neutron energies En < 3 MeV including total, elastic
and inelastic cross sections, angular distributions of elas-
tically and inelastically scattered neutrons, strength func-
tions and potential scattering lengths. Such a description
was obtained using one set of the model parameters, but
assuming that the surface layer thickness (diffuseness of
the optical potential) may be slightly altered for magic
and near-magic nuclei.

Our results show that this version of CCOM can be
used for calculating neutron cross sections and strength
functions of even-even spherical nuclei for which direct
measurements of these quantities are impossible or diffi-
cult.

As to the NpNn-systematics of inelastic neutron
cross sections, being combined with CCOM calculations
it presents an additional method of finding so-called
semimagic numbers of protons and neutrons.
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